(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
inc(Cons(x, xs)) → Cons(Cons(Nil, Nil), inc(xs))
nestinc(Nil) → number17(Nil)
nestinc(Cons(x, xs)) → nestinc(inc(Cons(x, xs)))
inc(Nil) → Cons(Nil, Nil)
number17(x) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))
goal(x) → nestinc(x)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
inc(Cons(x, xs)) → Cons(Cons(Nil, Nil), inc(xs))
nestinc(Nil) → number17(Nil)
nestinc(Cons(x, xs)) → nestinc(inc(Cons(x, xs)))
inc(Nil) → Cons(Nil, Nil)
number17(x) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))
goal(x) → nestinc(x)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
number17/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
inc(Cons(xs)) → Cons(inc(xs))
nestinc(Nil) → number17
nestinc(Cons(xs)) → nestinc(inc(Cons(xs)))
inc(Nil) → Cons(Nil)
number17 → Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Nil)))))))))))))))))
goal(x) → nestinc(x)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
inc(Cons(xs)) → Cons(inc(xs))
nestinc(Nil) → number17
nestinc(Cons(xs)) → nestinc(inc(Cons(xs)))
inc(Nil) → Cons(Nil)
number17 → Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Nil)))))))))))))))))
goal(x) → nestinc(x)
Types:
inc :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestinc :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number17 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
inc,
nestincThey will be analysed ascendingly in the following order:
inc < nestinc
(8) Obligation:
Innermost TRS:
Rules:
inc(
Cons(
xs)) →
Cons(
inc(
xs))
nestinc(
Nil) →
number17nestinc(
Cons(
xs)) →
nestinc(
inc(
Cons(
xs)))
inc(
Nil) →
Cons(
Nil)
number17 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil)))))))))))))))))
goal(
x) →
nestinc(
x)
Types:
inc :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestinc :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number17 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
inc, nestinc
They will be analysed ascendingly in the following order:
inc < nestinc
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_Cons:Nil2_0(
n4_0)) →
gen_Cons:Nil2_0(
+(
1,
n4_0)), rt ∈ Ω(1 + n4
0)
Induction Base:
inc(gen_Cons:Nil2_0(0)) →RΩ(1)
Cons(Nil)
Induction Step:
inc(gen_Cons:Nil2_0(+(n4_0, 1))) →RΩ(1)
Cons(inc(gen_Cons:Nil2_0(n4_0))) →IH
Cons(gen_Cons:Nil2_0(+(1, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
inc(
Cons(
xs)) →
Cons(
inc(
xs))
nestinc(
Nil) →
number17nestinc(
Cons(
xs)) →
nestinc(
inc(
Cons(
xs)))
inc(
Nil) →
Cons(
Nil)
number17 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil)))))))))))))))))
goal(
x) →
nestinc(
x)
Types:
inc :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestinc :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number17 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
inc(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
nestinc
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol nestinc.
(13) Obligation:
Innermost TRS:
Rules:
inc(
Cons(
xs)) →
Cons(
inc(
xs))
nestinc(
Nil) →
number17nestinc(
Cons(
xs)) →
nestinc(
inc(
Cons(
xs)))
inc(
Nil) →
Cons(
Nil)
number17 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil)))))))))))))))))
goal(
x) →
nestinc(
x)
Types:
inc :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestinc :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number17 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
inc(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inc(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
inc(
Cons(
xs)) →
Cons(
inc(
xs))
nestinc(
Nil) →
number17nestinc(
Cons(
xs)) →
nestinc(
inc(
Cons(
xs)))
inc(
Nil) →
Cons(
Nil)
number17 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil)))))))))))))))))
goal(
x) →
nestinc(
x)
Types:
inc :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestinc :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number17 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
inc(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inc(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)